社会网络分析论坛 social network analysis forum

 找回密码
 立即注册
期刊投稿论文自测,和杂志社一致
论文中期gocheck自助检测
万方论文自助检测, 适合前期修改
知网论文检测, 结果跟学校一样
人群与网络2014视频免费下载
citespace使用流程图
【视频】方法论的关系主义群
edx人群与网络2014课件打包
林南的思想
社会网络分析入门书目
社会网络分析能回答哪些社会学问题
案例:通过微信找到犯罪团伙
边燕杰《社会网络研究专题》 大纲
社会网络分析参考资料
【Gephi 中文教程-练习数据】
【林南社会网络讲座录音】
【视频】gephi入门教程
大连接:社会网络是如何形成
社会网络分析及健康传播(18集)
!!!本站金币获取方式!!!
郑路:社会网络20讲
【视频】方法论的关系主义
pajek视频教程 35课
Gephi 0.9.2快速入门视频教程
查看: 2892|回复: 0
打印 上一主题 下一主题

【转】大数据常用的各种算法

[复制链接]

683

主题

924

帖子

998万

积分

管理员

Rank: 9Rank: 9Rank: 9

金币
9977499
贡献
448
威望
448
积分
9980072
跳转到指定楼层
楼主
发表于 2020-5-23 09:52:39 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
我们经常谈到的所谓的​​数据挖掘是通过大量的数据集进行排序,自动化识别趋势和模式并且建立相关性的过程。那现在市面的数据公司都是通过各种各样的途径来收集海量的信息,这些信息来自于网站、公司应用、社交媒体、移动设备和不断增长的物联网。
比如我们现在每天都在使用的搜索引擎。在自然语言处理领域,有一种非常流行的算法模型,叫做词袋模型,即把一段文字看成一袋水果,这个模型就是要算出这袋水果里,有几个苹果、几个香蕉和几个梨。搜索引擎会把这些数字记下来,如果你想要苹果,它就会把有苹果的这些袋子给你。





当我们在网上买东西或是看电影时,网站会推荐一些可能符合我们偏好的商品或是电影,这个推荐有时候还挺准。事实上,这背后的算法,是在数你喜欢的电影和其他人喜欢的电影有多少个是一样的,如果你们同时喜欢的电影超过一定个数,就把其他人喜欢、但你还没看过的电影推荐给你。搜索引擎和推荐系统在实际生产环境中还要做很多额外的工作,但是从本质上来说,它们都是在数数。
当数据量比较小的时候,可以通过人工查阅数据。而到了大数据时代,几百TB甚至上PB的数据在分析师或者老板的报告中,就只是几个数字结论而已。在数数的过程中,数据中存在的信息也随之被丢弃,留下的那几个数字所能代表的信息价值,不抵其真实价值之万一。过去十年,许多公司花了大价钱,用上了物联网和云计算,收集了大量的数据,但是到头来却发现得到的收益并没有想象中那么多。
所以说我们现在正处于“数字化一切”的时代。人们的所有行为,都将以某种数字化手段转换成数据并保存下来。每到新年,各大网站、App就会给用户推送上一年的回顾报告,比如支付宝会告诉用户在过去一年里花了多少钱、在淘宝上买了多少东西、去什么地方吃过饭、花费金额超过了百分之多少的小伙伴;航旅纵横会告诉用户去年做了多少次飞机、总飞行里程是多少、去的最多的城市是哪里;同样的,最后让用户知道他的行程超过了多少小伙伴。这些报告看起来非常酷炫,又冠以“大数据”之名,让用户以为是多么了不起的技术。
实际上,企业对于数据的使用和分析,并不比我们每年收到的年度报告更复杂。已经有30多年历史的商业智能,看起来非常酷炫,其本质依然是数数,并把数出来的结果画成图给管理者看。只是在不同的行业、场景下,同样的数字和图表会有不同的名字。即使是最近几年炙手可热的大数据处理技术,也不过是可以数更多的数,并且数的更快一些而已。


目前缺乏的商机


在大数据处理过程中会用到那些算法呢?
 1、A* 搜索算法——图形搜索算法,从给定起点到给定终点计算出路径。其中使用了一种启发式的估算,为每个节点估算通过该节点的较佳路径,并以之为各个地点排定次序。算法以得到的次序访问这些节点。因此,A*搜索算法是较佳优先搜索的范例。
  2、集束搜索(又名定向搜索,Beam Search)——较佳优先搜索算法的优化。使用启发式函数评估它检查的每个节点的能力。不过,集束搜索只能在每个深度中发现最前面的m个最符合条件的节点,m是固定数字——集束的宽度。
  3、二分查找(Binary Search)——在线性数组中找特定值的算法,每个步骤去掉一半不符合要求的数据。
  4、分支界定算法(Branch and Bound)——在多种最优化问题中寻找特定最优化解决方案的算法,特别是针对离散、组合的最优化。
  5、Buchberger算法——一种数学算法,可将其视为针对单变量较大公约数求解的欧几里得算法和线性系统中高斯消元法的泛化。
  6、数据压缩——采取特定编码方案,使用更少的字节数(或是其他信息承载单元)对信息编码的过程,又叫来源编码。
  7、Diffie-Hellman密钥交换算法——一种加密协议,允许双方在事先不了解对方的情况下,在不安全的通信信道中,共同建立共享密钥。该密钥以后可与一个对称密码一起,加密后续通讯。
  8、Dijkstra算法——针对没有负值权重边的有向图,计算其中的单一起点最短算法。
  9、离散微分算法(Discrete differentiation)。
  10、动态规划算法(Dynamic Programming)——展示互相覆盖的子问题和最优子架构算法
  11、欧几里得算法(Euclidean algorithm)——计算两个整数的较大公约数。最古老的算法之一,出现在公元前300前欧几里得的《几何原本》。
  12、期望-较大算法(Expectation-maximization algorithm,又名EM-Training)——在统计计算中,期望-较大算法在概率模型中寻找可能性较大的参数估算值,其中模型依赖于未发现的潜在变量。EM在两个步骤中交替计算,第一步是计算期望,利用对隐藏变量的现有估计值,计算其较大可能估计值;第二步是较大化,较大化在第一步上求得的较大可能值来计算参数的值。
  13、快速傅里叶变换(Fast Fourier transform,FFT)——计算离散的傅里叶变换(DFT)及其反转。该算法应用范围很广,从数字信号处理到解决偏微分方程,到快速计算大整数乘积。




















14、梯度下降(Gradient descent)——一种数学上的最优化算法。
  15、哈希算法(Hashing)。
  16、堆排序(Heaps)。
  17、Karatsuba乘法——需要完成上千位整数的乘法的系统中使用,比如计算机代数系统和大数程序库,如果使用长乘法,速度太慢。该算法发现于1962年。
  18、LLL算法(Lenstra-Lenstra-Lovasz lattice reduction)——以格规约(lattice)基数为输入,输出短正交向量基数。LLL算法在以下公共密钥加密方法中有大量使用:背包加密系统(knapsack)、有特定设置的RSA加密等等。
  19、较大流量算法(Maximum flow)——该算法试图从一个流量网络中找到较大的流。它优势被定义为找到这样一个流的值。较大流问题可以看作更复杂的网络流问题的特定情况。较大流与网络中的界面有关,这就是较大流-最小截定理(Max-flow min-cut theorem)。Ford-Fulkerson 能找到一个流网络中的较大流。
  20、合并排序(Merge Sort)。
  21、牛顿法(Newton's method)——求非线性方程(组)零点的一种重要的迭代法。
  22、Q-learning学习算法——这是一种通过学习动作值函数(action-value function)完成的强化学习算法,函数采取在给定状态的给定动作,并计算出期望的效用价值,在此后遵循固定的策略。Q-leanring的优势是,在不需要环境模型的情况下,可以对比可采纳行动的期望效用。
  23、两次筛法(Quadratic Sieve)——现代整数因子分解算法,在实践中,是目前已知第二快的此类算法(仅次于数域筛法Number Field Sieve)。对于110位以下的十位整数,它仍是最快的,而且都认为它比数域筛法更简单。
  24、RANSAC——是“RANdom SAmple Consensus”的缩写。该算法根据一系列观察得到的数据,数据中包含异常值,估算一个数学模型的参数值。其基本假设是:数据包含非异化值,也就是能够通过某些模型参数解释的值,异化值就是那些不符合模型的数据点。
  25、RSA——公钥加密算法。较早的适用于以签名作为加密的算法。RSA在电商行业中仍大规模使用,大家也相信它有足够安全长度的公钥。
  26、Schönhage-Strassen算法——在数学中,Schönhage-Strassen算法是用来完成大整数的乘法的快速渐近算法。其算法复杂度为:O(N log(N) log(log(N))),该算法使用了傅里叶变换。
  27、单纯型算法(Simplex Algorithm)——在数学的优化理论中,单纯型算法是常用的技术,用来找到线性规划问题的数值解。线性规划问题包括在一组实变量上的一系列线性不等式组,以及一个等待较大化(或最小化)的固定线性函数。
  28、奇异值分解(Singular value decomposition,简称SVD)——在线性代数中,SVD是重要的实数或复数矩阵的分解方法,在信号处理和统计中有多种应用,比如计算矩阵的伪逆矩阵(以求解最小二乘法问题)、解决超定线性系统(overdetermined linear systems)、矩阵逼近、数值天气预报等等。
  29、求解线性方程组(Solving a system of linear equations)——线性方程组是数学中最古老的问题,它们有很多应用,比如在数字信号处理、线性规划中的估算和预测、数值分析中的非线性问题逼近等等。求解线性方程组,可以使用高斯—约当消去法(Gauss-Jordan elimination),或是柯列斯基分解( Cholesky decomposition)。
  30、Strukturtensor算法——应用于模式识别领域,为所有像素找出一种计算方法,看看该像素是否处于同质区域( homogenous region),看看它是否属于边缘,还是是一个顶点。
  31、合并查找算法(Union-find)——给定一组元素,该算法常常用来把这些元素分为多个分离的、彼此不重合的组。不相交集(disjoint-set)的数据结构可以跟踪这样的切分方法。合并查找算法可以在此种数据结构上完成两个有用的操作:
  查找:判断某特定元素属于哪个组。
  合并:联合或合并两个组为一个组。
  32、维特比算法(Viterbi algorithm)——寻找隐藏状态最有可能序列的动态规划算法,这种序列被称为维特比路径,其结果是一系列可以观察到的事件,特别是在隐藏的Markov模型中。



作者:方弟
链接:https://www.jianshu.com/p/1e43bfd0487a
来源:简书
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

回复

使用道具 举报

QQ|Archiver|手机版|小黑屋|社会网络分析论坛 social network analysis forum ( 88876751 )

GMT+8, 2024-11-23 09:37 , Processed in 0.159000 second(s), 22 queries .

Powered by www.snachina.com X3.3

© 2001-2017 snachina.com.

快速回复 返回顶部 返回列表